Gated Integrators and Boxcar Averagers

SR235 - Analog processor

- 36 functions

- Dual inputs
- Post filtering and gain adjustment
- 2 \% basic accuracy
- SR235 ... \$1000 (u.s. list)

SR235 Analog Processor

The SR235 Analog Processor provides a variety of convenient signal processing functions on one or two inputs. Background subtraction, ratioing and logarithmic compression are just a few of the functions which can be implemented with the SR235. With its many output functions, high accuracy and variable filtering and gain, the SR235 is the perfect addition for any boxcar system, especially those in which a computer is unavailable to perform signal processing.

The SR235 outputs a voltage proportional to a function of an argument formed from its two inputs, A and B . Allowable arguments are: $\mathrm{A}, \mathrm{B}, \sqrt{ }\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right), \mathrm{A}-\mathrm{B}, \mathrm{A} \times \mathrm{B} / 10$, and $10 \mathrm{~A} /|\mathrm{B}|$. The functions that can be selected are: $\mathrm{x}, \mathrm{x}^{2}, \sqrt{ } \mathrm{x}, \ln |\mathrm{x}|,-\mathrm{dx} / \mathrm{dt}$, and $-(\mathrm{dx} / \mathrm{dt}) / 100$. Filtering can be performed on the argument with time constants from 0.3 ms to 30 s .

Ordering Information

SR235
Analog processor
$\$ 1000$
A and B inputs
Input offset
Argument (x)
Argument filter

Gain
$\mathrm{F}(\mathrm{x})$ output
Frequency range

Accuracy

Power
Mechanical
Warranty
$1 \mathrm{M} \Omega$ input impedance. Operating range $\pm 10 \mathrm{~V}$, protected to 100 V $<2 \mathrm{mV}$
$A, B, \sqrt{ }\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right), \mathrm{A}-\mathrm{B}, \mathrm{A} \times \mathrm{B} / 10,10 \mathrm{~A} / \mathrm{B}$
Time constants from 0.3 ms to 30 s in a $1-3-10$ sequence. When OFF, argument is unfiltered.
0.1 to 20 in a $1-2-5$ sequence
$\mathrm{x}, \mathrm{x}^{2}, \sqrt{\mathrm{x}}, \ln |\mathrm{x}|,-\mathrm{dx} / \mathrm{dt},-(\mathrm{dx} / \mathrm{dt}) / 100$
$-\mathrm{dx} / \mathrm{dt}$ to $10 \mathrm{~Hz},-(\mathrm{dx} / \mathrm{dt}) / 100$ to 1 kHz , $\sqrt{ }\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)$ to 20 Hz , and all others from DC to 50 kHz
Gain, 2 \%; rms sum, 3 \%; difference, 1%; multiplication, 2% of full scale; division (denominator >0.1), 3% of full scale; $\ln |\mathbf{x}|, \mathrm{x}^{2}, \sqrt{\mathrm{x}}$ acc. to $\pm 20 \mathrm{mV}$ (ref. to input or output, whichever is less); -dx/dt and -(dx/dt)/100, 5 \% $+24 \mathrm{~V} / 120 \mathrm{~mA},-24 \mathrm{~V} / 80 \mathrm{~mA} .5 \mathrm{~W}$
Single-width NIM standard
One year parts and labor

